Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA
نویسندگان
چکیده
During V(D)J recombination, recombination activating gene (RAG)1 and RAG2 bind and cleave recombination signal sequences (RSSs), aided by the ubiquitous DNA-binding/-bending proteins high-mobility group box protein (HMGB)1 or HMGB2. HMGB1/2 play a critical, although poorly understood, role in vitro in the assembly of functional RAG-RSS complexes, into which HMGB1/2 stably incorporate. The mechanism of HMGB1/2 recruitment is unknown, although an interaction with RAG1 has been suggested. Here, we report data demonstrating only a weak HMGB1-RAG1 interaction in the absence of DNA in several assays, including fluorescence anisotropy experiments using a novel Alexa488-labeled HMGB1 protein. Addition of DNA to RAG1 and HMGB1 in fluorescence anisotropy experiments, however, results in a substantial increase in complex formation, indicating a synergistic binding effect. Pulldown experiments confirmed these results, as HMGB1 was recruited to a RAG1-DNA complex in a RAG1 concentration-dependent manner and, interestingly, without strict RSS sequence specificity. Our finding that HMGB1 binds more tightly to a RAG1-DNA complex over RAG1 or DNA alone provides an explanation for the stable integration of this typically transient architectural protein in the V(D)J recombinase complex throughout recombination. These findings also have implications for the order of events during RAG-DNA complex assembly and for the stabilization of sequence-specific and non-specific RAG1-DNA interactions.
منابع مشابه
The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2.
V(D)J recombination is initiated by the specific binding of the RAG1-RAG2 (RAG1/2) complex to the heptamer-nonamer recombination signal sequences (RSS). Several steps of the V(D)J recombination reaction can be reconstituted in vitro with only RAG1/2 plus the high-mobility-group protein HMG1 or HMG2. Here we show that the RAG1 homeodomain directly interacts with both HMG boxes of HMG1 and HMG2 (...
متن کاملRAG1 and RAG2 Form a Stable Postcleavage Synaptic Complex with DNA Containing Signal Ends in V(D)J Recombination
During V(D)J recombination, RAG1 and RAG2 cleave DNA adjacent to highly conserved recombination signals, but nothing is known about the protein-DNA complexes that exist after cleavage. Using a properly regulated in vitro V(D)J cleavage system, together with nuclease sensitivity, mobility shift, and immunoprecipitation experiments, we provide evidence that a stable complex is formed postcleavage...
متن کاملA highly ordered structure in V(D)J recombination cleavage complexes is facilitated by HMG1.
Central to understanding the process of V(D)J recombination is appreciation of the protein-DNA complex which assembles on the recombination signal sequences (RSS). In addition to RAG1 and RAG2, the protein HMG1 is known to stimulate the efficiency of the cleavage reaction. Using electrophoretic mobility shift analysis we show that HMG1 stimulates the in vitro assembly of a stable complex with t...
متن کاملRAG1 Mediates Signal Sequence Recognition and Recruitment of RAG2 in V(D)J Recombination
Recent studies have demonstrated that DNA cleavage during V(D)J recombination is mediated by the RAG1 and RAG2 proteins. These proteins must therefore bind to the recombination signals, but the specific binding interaction has been difficult to study in vitro. Here, we use an in vivo one-hybrid DNA binding assay to demonstrate that RAG1, in the absence of RAG2, can mediate signal recognition vi...
متن کاملV(D)J Recombination: Modulation of RAG1 and RAG2 Cleavage Activity on 12/23 Substrates by Whole Cell Extract and DNA-bending Proteins
Antigen receptor gene rearrangement is directed by DNA motifs consisting of a conserved heptamer and nonamer separated by a nonconserved spacer of either 12 or 23 base pairs (12 or 23 recombination signal sequences [RSS]). V(D)J recombination requires that the rearranging DNA segments be flanked by RSSs of different spacer lengths, a phenomenon known as the 12/23 rule. Recent studies have shown...
متن کامل